

Ø To create a sorted list with control levels, you can use internal tables or datasets
generated with the EXTRACT statement.

Ø Use internal tables to process datasets with the same structure.

Ø Intermediate datasets are suitable for datasets that are structured differently.

Declaring an Internal table with Header line

TABLES SFLIGHT.
TYPES: BEGIN OF T_ITAB,

 CARRID LIKE SFLIGHT_CARRID,
 CONNID LIKE SFLIGHT_CONNID,
 FLDATE LIKE SFLIGHT_FLDATE,
 PAYMENTSUM LIKE SFLIGHT_PAYMENTSUM,
 END OF T_ITAB.

DATA: ITAB TYPE T_ITAB OCCURS 100 WITH HEADER LINE.

Ø You declare an internal table using the DATA statement.

Ø To define an internal table with a header line, you can use one of the following
possibilities:

You either use the fields of the table line between BEGIN OF <tab> OCCURS
<n> and END OF <tab> or you refer to a structure type when defining the
table. In the latter case, the WITH HEADER LINE addition sees to it that the
header line is created.

The OCCURS parameter sees to it that an internal table is created, not a field
string.

After OCCURS, you have to specify a numerical literal.

Note: When you know that your internal table will be smaller than 8 KB,
you can specify the number of table lines in the OCCURS parameter.

The memory area for this size is then allocated accordingly. This is of particular
importance for nested structures. If the memory area is not sufficient, more
blocks of 8 KB or 16 KB are created.

Note : If you do not know the size of the internal table beforehand, you
can set the OCCURS parameter to 0.

Depending on the line width, blocks of 8 KB or 16 KB are created to
accommodate the table lines. The new memory management stores the internal
tables in the extended memory, a memory area you can address directly.

Filling an Internal Table with Header Line

Ø The APPEND statement stores the contents of the header line at the end of the
internal table.

Ø The COLLECT statement includes the header line of an internal table as a new
entry in the table or adds it to an existing entry with the same structure.

Ø ABAP/4 searches an entry in the table, which is identical in all fields other than
fields of type P, I or F. If the system finds such an entry, it adds all header line
fields of type P, I or F in the column accordingly to the corresponding fields of the
table entry.

Ø If the system does not find such an entry, the contents of the header line is
included as a new table entry at the table end.

Sorting an Internal Table

Ø To sort an internal table, use the SORT statement. If you do not specify a sort
key, the table is sorted by fields ignoring fields of type P, I or F, in ascending
order as declared.

Ø The additions BY <fieldname> and/or ASCENDING or DESCENDING allow
you to sort by particular field. You can also determine the sort order and
hierarchy (including type P, I, and F fields!). You can also set the sort key by
using SORT <itab> BY ... (fieldname) at runtime.

Ø You should restrict your sort criterion by using the BY parameter. ABAP/4
requires less main memory space to perform the sort procedure.

TABLES SFLIGHT.
DATA ITAB TYPE T_ITAB OCCURS 100 WITH HEADER LINE.

....
* Fill Internal Table
....
SORT ITAB BY FLDATE CARRID CONNID.
.
.
SORT ITAB.
.
SORT ITAB BY CARRID ASCENDING PAYMENTSUM

DESCENDING.

Processing an Internal Table with Header

Ø You process an internal table using the LOOP AT <tab>. ... ENDLOOP loop
statement.

Ø The ABAP/4 runtime system places the next table entry in the header line with
each loop pass. When addressing table fields in the program, these are the
header line fields.

Ø When working with tables without a header line, you need a work area, which
corresponds to the structure of a table line.

Ø With LOOP AT <tab> INTO <wa> the internal table entries are transferred
one after another to the work area <wa>.

TABLES SFLIGHT.
DATA ITAB TYPE T_ITAB OCCURS 100 WITH HEADER LINE.

....
* Fill Internal Table
* Output
LOOP AT ITAB.

WRITE: / ITAB-CARRID COLOR COL_KEY,
 ITAB-CONNID COLOR COL_KEY,
 ITAB_FLDATE COLOR COL_KEY,
 ITAB_PAYMENTSUM COLOR COL_NORMAL.

ENDLOOP.

Ø When processing an internal table with the LOOP statement, you can perform
control level processing with the AT FIRST, AT NEW, AT END OF and AT
LAST statements.

Ø You have to conclude the statement sequence for each AT statement with
ENDAT . This processing block is executed whenever the contents of <field> or of
a component defined before <field> (that is, to the left of <field> in the record)
change.

Ø If you use the SUM statement in an AT ... ENDAT block, the system calculates
totals for the corresponding control level and/or grand total (for AT FIRST or
AT LAST).

The system totals all fields of type P, I and F according to columns and places
them in the corresponding fields in the header line.

The total fields have the same length as the fields to be totaled. This can result
in an overflow. Increase the length of the fields affected.

You can use the SUM statement with control level headers and with control level
footers.

Ø When formulating control level processing, you have to follow the above order
concerning the individual control levels within the LOOP statement.

Ø Single record processing occurs outside the AT ... ENDAT statement.

Intermediate Dataset

When working with several internal tables linked via key fields, you can avoid data
redundancy to a large degree. In the example above, table ITAB_SPFLI is sorted by
CITYFROM CARRID CONNID, table ITAB_SFLIGHT by FLDATE. During the
processing of table ITAB_SPFLI, the corresponding records from ITAB_SFLIGHT
are read and output for each entry. This requires extensive programming work.

Because of the disadvantages stated above, ABAP/4 provides another sorting
procedure. With different record types, you can generate intermediate datasets. To
do so, you have to define the required record types (the name is freely selectable;
here: CONNECTIONS, FLIGHTS). Each record is automatically preceded by the
sort key (record type HEADER, name is pre-defined). Fields with no values are set
to Hex 00. When sorting the dataset, these fields always precede the fields
containing with values, irrespective of the sort sequence.

To define the record types, proceed as follows:

1. Declare the required record type (field groups, FIELD-GROUPS). The field
group HEADER must always be specified. This group must contain all fields
you want to use in the sort procedure.

2. Assign the required fields to the field groups (INSERT ... INTO...).

When executing the EXTRACT statement, the fields of the header and the
fields of the corresponding field groups from the relevant work areas are
supplied with contents. Database fields of dependent segments (e.g. SFLIGHT-
FLDATE at the event GET SPFLI) are set to Hex 00. Header and field group
are written as a record to the intermediate dataset.

Sorting and Processing an Extract

Ø Intermediate datasets generated with the EXTRACT statement are typically
sorted and processed at the END-OF-SELECTION event.

Ø You edit the sorted dataset within a LOOP pass during which the system
provides you with record by record.

Ø Within LOOP you can use statements (AT...) which on the one hand address the
single records of the sorted dataset (AT <fieldgroup>) and on the other hand
allow control break processing (AT FIRST, AT LAST, AT NEW <sortfield>, AT
END OF <sortfield>).

Ø For group processing, the datasets have to be sorted correspondingly.

Ø The AT ... statements are control statements. The corresponding processing
block must therefore conclude with ENDAT.

Ø When using the SORT statement without additions, the system sorts by the
entire header. You are recommended to restrict the search criterion by using the
BY parameter. You will improve the performance and need less working
memory.

Ø Within AT END OF ... ENDAT and AT LAST. ... ENDAT you can address the
fields SUM(<numfield>) and CNT (<headerfield>):

Ø SUM(<numfield>) calculates totals by groups. The work field required is
provided automatically and initialized with 0 at each control break.

Ø CNT(<headerfield>) is increased by 1 when the contents of the specified header
field changes. With any control break, the field addressed with CNT, which is
responsible for the control break, must be subordinated in the sort order.

